




Characteristics of Selected Elements

   Atomic Density of Crystal Atomic Ionic Most Melting
  Atomic Weight Solid, 20°C Structure,a Radius Radius Common Point
Element Symbol Number (amu) (g/cm3) 20°C (nm) (nm) Valence (°C)

Aluminum Al 13 26.98 2.71 FCC 0.143 0.053 3+ 660.4

Argon Ar 18 39.95 — — — — Inert −189.2

Barium Ba 56 137.33 3.5 BCC 0.217 0.136 2+ 725

Beryllium Be 4 9.012 1.85 HCP 0.114 0.035 2+ 1278

Boron B 5 10.81 2.34 Rhomb. — 0.023 3+ 2300

Bromine Br 35 79.90 — — — 0.196 1− −7.2

Cadmium Cd 48 112.41 8.65 HCP 0.149 0.095 2+ 321

Calcium Ca 20 40.08 1.55 FCC 0.197 0.100 2+ 839

Carbon C 6 12.011 2.25 Hex. 0.071 ∼0.016 4+ (sublimes at 3367)

Cesium Cs 55 132.91 1.87 BCC 0.265 0.170 1+ 28.4

Chlorine Cl 17 35.45 — — — 0.181 1− −101

Chromium Cr 24 52.00 7.19 BCC 0.125 0.063 3+ 1875

Cobalt Co 27 58.93 8.9 HCP 0.125 0.072 2+ 1495

Copper Cu 29 63.55 8.94 FCC 0.128 0.096 1+ 1085

Fluorine F 9 19.00 — — — 0.133 1− −220

Gallium Ga 31 69.72 5.90 Ortho. 0.122 0.062 3+ 29.8

Germanium Ge 32 72.64 5.32 Dia. cubic 0.122 0.053 4+ 937

Gold Au 79 196.97 19.32 FCC 0.144 0.137 1+ 1064

Helium He 2 4.003 — — — — Inert −272 (at 26 atm)

Hydrogen H 1 1.008 — — — 0.154 1+ −259

Iodine I 53 126.91 4.93 Ortho. 0.136 0.220 1− 114

Iron Fe 26 55.85 7.87 BCC 0.124 0.077 2+ 1538

Lead Pb 82 207.2 11.35 FCC 0.175 0.120 2+ 327

Lithium Li 3 6.94 0.534 BCC 0.152 0.068 1+ 181

Magnesium Mg 12 24.31 1.74 HCP 0.160 0.072 2+ 649

Manganese Mn 25 54.94 7.44 Cubic 0.112 0.067 2+ 1244

Mercury Hg 80 200.59 — — — 0.110 2+ −38.8

Molybdenum Mo 42 95.94 10.22 BCC 0.136 0.070 4+ 2617

Neon Ne 10 20.18 — — — — Inert −248.7

Nickel Ni 28 58.69 8.90 FCC 0.125 0.069 2+ 1455

Niobium Nb 41 92.91 8.57 BCC 0.143 0.069 5+ 2468

Nitrogen N 7 14.007 — — — 0.01–0.02 5+ −209.9

Oxygen O 8 16.00 — — — 0.140 2− −218.4

Phosphorus P 15 30.97 1.82 Ortho. 0.109 0.035 5+ 44.1

Platinum Pt 78 195.08 21.45 FCC 0.139 0.080 2+ 1772

Potassium K 19 39.10 0.862 BCC 0.231 0.138 1+ 63

Silicon Si 14 28.09 2.33 Dia. cubic 0.118 0.040 4+ 1410

Silver Ag 47 107.87 10.49 FCC 0.144 0.126 1+ 962

Sodium Na 11 22.99 0.971 BCC 0.186 0.102 1+ 98

Sulfur S 16 32.06 2.07 Ortho. 0.106 0.184 2− 113

Tin Sn 50 118.71 7.27 Tetra. 0.151 0.071 4+ 232

Titanium Ti 22 47.87 4.51 HCP 0.145 0.068 4+ 1668

Tungsten W 74 183.84 19.3 BCC 0.137 0.070 4+ 3410

Vanadium V 23 50.94 6.1 BCC 0.132 0.059 5+ 1890

Zinc Zn 30 65.41 7.13 HCP 0.133 0.074 2+ 420

Zirconium Zr 40 91.22 6.51 HCP 0.159 0.079 4+ 1852

aDia. = Diamond; Hex. = Hexagonal; Ortho. = Orthorhombic; Rhomb. = Rhombohedral; Tetra. = Tetragonal.



Values of Selected Physical Constants

Quantity Symbol SI Units cgs Units

Avogadro’s number NA 6.022 × 1023 6.022 × 1023

  molecules/mol molecules/mol

Boltzmann’s constant k 1.38 × 10−23 J/atom∙K 1.38 × 10−16 erg/atom∙K
   8.62 × 10−5 eV/atom∙K
Bohr magneton μB 9.27 × 10−24 A∙m2 9.27 × 10−21 erg/gaussa

Electron charge e 1.602 × 10−19 C 4.8 × 10−10 statcoulb

Electron mass — 9.11 × 10−31 kg 9.11 × 10−28 g

Gas constant R 8.31 J/mol∙K 1.987 cal/mol∙K
Permeability of a vacuum μ0 1.257 × 10−6 henry/m Unitya

Permittivity of a vacuum ε0 8.85 × 10−12 farad/m Unityb

Planck’s constant h 6.63 × 10−34 J∙s 6.63 × 10−27 erg∙s
   4.13 × 10−15 eV∙s
Velocity of light in a vacuum c 3 × 108 m/s 3 × 1010 cm/s

a In cgs-emu units.
b In cgs-esu units.

SI Multiple and Submultiple Prefixes

Factor by Which
Multiplied Prefix Symbol

109 giga G

106 mega M

103 kilo k

10−2 centia c

10−3 milli m

10−6 micro μ

10−9 nano n

10−12 pico p

aAvoided when possible.

Unit Abbreviations

 A = ampere in. = inch N = newton

 Å = angstrom J = joule nm = nanometer

 Btu = British thermal unit K = degrees Kelvin P = poise

 C = Coulomb kg = kilogram Pa = Pascal

 °C = degrees Celsius lbf = pound force s = second

 cal = calorie (gram) lbm = pound mass T = temperature

 cm = centimeter m = meter μm = micrometer (micron)

 eV = electron volt Mg = megagram W = watt

 °F = degrees Fahrenheit mm = millimeter psi = pounds per square inch

 ft = foot mol = mole

 g = gram MPa = megapascal
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In this fifth edition we have retained the objectives and approaches for teaching 

materials science and engineering that were presented in previous editions. These objec-

tives are as follows:

 • Present the basic fundamentals on a level appropriate for university/college 

students who have completed their freshmen calculus, chemistry, and physics 

courses.

 • Present the subject matter in a logical order, from the simple to the more complex. 

Each chapter builds on the content of previous ones.

 • If a topic or concept is worth treating, then it is worth treating in sufficient detail 

and to the extent that students have the opportunity to fully understand it without 

having to consult other sources; in addition, in most cases, some practical relevance 

is provided.

 • Inclusion of features in the book that expedite the learning process, to include the 

following: photographs/illustrations (some in full color); learning objectives; “Why 

Study . . .” and “Materials of Importance” items (to provide relevance); “Concept 

Check” questions (to test conceptual understanding); end-of-chapter questions and 

problems (to develop understanding of concepts and problem-solving skills); 

end-of-book Answers to Selected Problems (to check accuracy of work); end-of-

chapter summary tables containing key equations and equation symbols, and a 

glossary (for easy reference).

 • Employment of new instructional technologies to enhance the teaching and 

learning processes.

NEW/REVISED CONTENT
This new edition contains a number of new sections, as well as revisions/amplifications of 

other sections. These include the following:

 • Two new case studies:  “Liberty Ship Failures” (Chapter 1) and “Use of Composites 

in the Boeing 787 Dreamliner” (Chapter 15)

 • Bond hybridization in carbon (Chapter 2)

 • Revision of discussions on crystallographic planes and directions to include the use 

of equations for the determination of planar and directional indices (Chapter 3)

 • Revised discussion on determination of grain size (Chapter 5)

 • New section on the structure of carbon fibers (Chapter 13)

 • Revised/expanded discussions on structures, properties, and applications of the 

nanocarbons: fullerenes, carbon nanotubes, and graphene; also on ceramic 

refractories and abrasives (Chapter 13)
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 • Revised/expanded discussion on structural composites: laminar composites and 

sandwich panels (Chapter 15)

 • New section on structure, properties, and applications of nanocomposite materials 

(Chapter 15)

 • Revised/expanded discussion on recycling issues in materials science and 

engineering (Chapter 20)

 • Numerous new and revised example problems.  In addition, all homework 

problems requiring computations have been refreshed.

WileyPLUS (www.wileyplus.com)
WileyPLUS is a research-based online environment for effective teaching and learning.  

It builds students’ confidence by taking the guesswork out of studying by providing them 

with a clear roadmap: what is assigned, what is required for each assignment, and whether 

assignments are done correctly.  Independent research has shown that students using 

WileyPLUS will take more initiative so the instructor has a greater impact on their 

achievement in the classroom and beyond. WileyPLUS also helps students study and 

progress at a pace that’s right for them. Our integrated resources–available 24/7–function 

like a personal tutor, directly addressing each student’s demonstrated needs by providing 

specific problem-solving techniques.

What do students receive with WileyPLUS?

 • The complete digital textbook that saves students up to 60% of the cost of the 

in-print text.

 • Direct access to online self-assessment exercises. This is a web-based assessment 

program that contains questions and problems similar to those found in the text; 

these problems/questions are organized and labeled according to textbook sections. 

An answer/solution that is entered by the user in response to a question/problem is 

graded immediately, and comments are offered for incorrect responses. The student 

may use this electronic resource to review course material, and to assess his/her 

mastery and understanding of topics covered in the text.

 • Virtual Materials Science and Engineering (VMSE). This web-based software 

package consists of interactive simulations and animations that enhance the 

learning of key concepts in materials science and engineering. Included in VMSE 

are eight modules and a materials properties/cost database. Titles of these modules 

are as follows: (1) Metallic Crystal Structures and Crystallography; (2) Ceramic 

Crystal Structures; (3) Repeat Unit and Polymer Structures; (4) Dislocations; 

(5) Phase Diagrams; (6) Diffusion; (7) Tensile Tests; and (8) Solid-Solution 

Strengthening.

 • “Muddiest Point” Tutorial Videos. These videos (narrated by a student) help 

students with concepts that are difficult to understand and with solving 

troublesome problems.

 • Answers to Concept Check questions. Students can visit the web site to find the 

correct answers to the Concept Check questions posed in the print textbook.

ONLINE RESOURCES
Associated with the textbook are a number of online learning resources, which are avail-

able to both students and instructors. These resources are found on three websites: 

(1) WileyPLUS, (2) a Student Companion Site, and (3) an Instructor Companion Site.

http://www.wileyplus.com
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What do instructors receive with WileyPLUS?

 • The ability to effectively and efficiently personalize and manage their course.

 • The ability to track student performance and progress, and easily identify those 

who are falling behind.

 • The ability to assign algorithmic problems with computer generated values that can 

vary from student to student, encouraging the student to develop problem-solving 

skills rather than simply reporting results found in a web search.

INSTRUCTOR COMPANION SITE (www.wiley.com/college/callister)
The Instructor Companion Site is available for instructors who have adopted this text. 

Please visit the website to register for access. Resources that are available include the 

following:

 • All resources found on the Student Companion Site.

 • Instructor Solutions Manual. Detailed solutions for all end-of-chapter questions 

and problems (in both Word® and Adobe Acrobat® PDF formats).

 • Homework Problem Correlation Guide—4th edition to 5th edition. This guide 

notes, for each homework problem or question (by number), whether it appeared 

in the fourth edition and, if so, its number in this previous edition.

 • Image Gallery. Illustrations from the book. Instructors can use them in 

assignments, tests, or other exercises they create for students.

 • Art PowerPoint Slides. Book art loaded into PowerPoints, so instructors can more 

easily use them to create their own PowerPoint Slides.

 • Lecture Note PowerPoints. These slides, developed by the authors and Peter M. 

Anderson (The Ohio State University), follow the flow of topics in the text, and 

STUDENT COMPANION SITE (www.wiley.com/college/callister)
Posted on the Student Companion site are several important instructional elements that 

complement the text; these include the following:

 • Library of Case Studies. One way to demonstrate principles of design in an 

engineering curriculum is via case studies: analyses of problem-solving strategies 

applied to real-world examples of applications/devices/failures encountered by 

engineers. Six case studies are provided as follows: (1) Materials Selection for a 

Torsionally Stressed Cylindrical Shaft; (2) Automobile Valve Spring; (3) Failure of 

an Automobile Rear Axle; (4) Artificial Total Hip Replacement; (5) Intraocular 

Lens Implants; and (6) Chemical Protective Clothing.

 • Mechanical Engineering (ME) Module. This module treats materials science/

engineering topics not covered in the printed text that are relevant to mechanical 

engineering.

 • Extended Learning Objectives. This is a more extensive list of learning objectives 

than is provided at the beginning of each chapter. These direct the student to study 

the subject material to a greater depth.

 • Student Lecture PowerPoint® Slides. These slides (in both Adobe Acrobat® PDF 

and PowerPoint® formats) are virtually identical to the lecture slides provided to 

an instructor for use in the classroom. The student set has been designed to allow 

for note taking on printouts.



xiv  •  Preface

include materials taken from the text as well as other sources. Slides are available 

in both Adobe Acrobat® PDF and PowerPoint® formats. [Note: If an instructor 

doesn’t have available all fonts used by the developer, special characters may not 

be displayed correctly in the PowerPoint version (i.e., it is not possible to embed 

fonts in PowerPoints); however, in the PDF version, these characters will appear 

correctly.]

 • Solutions to Case Study Problems.

 • Solutions to Problems in the Mechanical Engineering Web Module.

 • Suggested Course Syllabi for the Various Engineering Disciplines. Instructors may 

consult these syllabi for guidance in course/lecture organization and planning.

 • Experiments and Classroom Demonstrations. Instructions and outlines for 

experiments and classroom demonstrations that portray phenomena and/or 

illustrate principles that are discussed in the book; references are also provided 

that give more detailed accounts of these demonstrations.

Feedback

We have a sincere interest in meeting the needs of educators and students in the materi-

als science and engineering community, and therefore we solicit feedback on this edition. 

Comments, suggestions, and criticisms may be submitted to the authors via email at the 

following address: billcallister2419@gmail.com.
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C h a p t e r 1  Introduction

A familiar item fabricated from three different material types is the 

beverage container. Beverages are marketed in aluminum (metal) cans 

(top), glass (ceramic) bottles (center), and plastic (polymer) bottles 

(bottom).
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Learning Objectives

After studying this chapter, you should be able to do the following:

1.  List six different property classifications of 
materials that determine their applicability.

2.  Cite the four components that are involved in the 
design, production, and utilization of materials, 
and briefly describe the interrelationships 
between these components.

3.  Cite three criteria that are important in the 
materials selection process.

4. (a)  List the three primary classifications of solid 
materials, and then cite the distinctive 
chemical feature of each.

(b)  Note the four types of advanced materials 
and, for each, its distinctive feature(s).

5. (a) Briefly define smart material/system.
(b)  Briefly explain the concept of nanotechnol-

ogy as it applies to materials.

Materials are probably more deep seated in our culture than most of us realize. 

Transportation, housing, clothing, communication, recreation, and food production—

virtually every segment of our everyday lives is influenced to one degree or another 

by materials. Historically, the development and advancement of societies have been 

intimately tied to the members’ ability to produce and manipulate materials to fill their 

needs. In fact, early civilizations have been designated by the level of their materials 

development (Stone Age, Bronze Age, Iron Age).1

The earliest humans had access to only a very limited number of materials, those that 

occur naturally: stone, wood, clay, skins, and so on. With time, they discovered techniques 

for producing materials that had properties superior to those of the natural ones; these 

new materials included pottery and various metals. Furthermore, it was discovered that the 

properties of a material could be altered by heat treatments and by the addition of other 

substances. At this point, materials utilization was totally a selection process that involved 

deciding from a given, rather limited set of materials the one best suited for an application 

by virtue of its characteristics. It was not until relatively recent times that scientists came to 

understand the relationships between the structural elements of materials and their proper-

ties. This knowledge, acquired over approximately the past 100 years, has empowered them 

to fashion, to a large degree, the characteristics of materials. Thus, tens of thousands of dif-

ferent materials have evolved with rather specialized characteristics that meet the needs of 

our modern and complex society, including metals, plastics, glasses, and fibers.

The development of many technologies that make our existence so comfortable 

has been intimately associated with the accessibility of suitable materials. An advance-

ment in the understanding of a material type is often the forerunner to the stepwise 

progression of a technology. For example, automobiles would not have been possible 

without the availability of inexpensive steel or some other comparable substitute. In 

the contemporary era, sophisticated electronic devices rely on components that are 

made from what are called semiconducting materials.

1.1 HISTORICAL PERSPECTIVE

1The approximate dates for the beginnings of the Stone, Bronze, and Iron Ages are 2.5 million bc, 3500 bc, and 

1000 bc, respectively.

Sometimes it is useful to subdivide the discipline of materials science and engineering 

into materials science and materials engineering subdisciplines. Strictly speaking, materi-

als science involves investigating the relationships that exist between the structures and 

1.2 MATERIALS SCIENCE AND ENGINEERING
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properties of materials. In contrast, materials engineering involves, on the basis of these 

structure–property correlations, designing or engineering the structure of a material to 

produce a predetermined set of properties.2 From a functional perspective, the role of a 

materials scientist is to develop or synthesize new materials, whereas a materials engi-

neer is called upon to create new products or systems using existing materials and/or to 

develop techniques for processing materials. Most graduates in materials programs are 

trained to be both materials scientists and materials engineers.

Structure is, at this point, a nebulous term that deserves some explanation. In brief, 

the structure of a material usually relates to the arrangement of its internal components. 

Subatomic structure involves electrons within the individual atoms and interactions with 

their nuclei. On an atomic level, structure encompasses the organization of atoms or 

molecules relative to one another. The next larger structural realm, which contains large 

groups of atoms that are normally agglomerated together, is termed microscopic, mean-

ing that which is subject to direct observation using some type of microscope. Finally, 

structural elements that can be viewed with the naked eye are termed macroscopic.

The notion of property deserves elaboration. While in service use, all materials are 

exposed to external stimuli that evoke some type of response. For example, a specimen 

subjected to forces experiences deformation, or a polished metal surface reflects light. A 

property is a material trait in terms of the kind and magnitude of response to a specific 

imposed stimulus. Generally, definitions of properties are made independent of mate-

rial shape and size.

Virtually all important properties of solid materials may be grouped into six differ-

ent categories: mechanical, electrical, thermal, magnetic, optical, and deteriorative. For 

each, there is a characteristic type of stimulus capable of provoking different responses. 

Mechanical properties relate deformation to an applied load or force; examples include 

elastic modulus (stiffness), strength, and toughness. For electrical properties, such as 

electrical conductivity and dielectric constant, the stimulus is an electric field. The 

thermal behavior of solids can be represented in terms of heat capacity and thermal 

conductivity. Magnetic properties demonstrate the response of a material to the ap-

plication of a magnetic field. For optical properties, the stimulus is electromagnetic or 

light radiation; index of refraction and reflectivity are representative optical properties. 

Finally, deteriorative characteristics relate to the chemical reactivity of materials. The 

chapters that follow discuss properties that fall within each of these six classifications.

In addition to structure and properties, two other important components are involved 

in the science and engineering of materials—namely, processing and performance. With 

regard to the relationships of these four components, the structure of a material depends 

on how it is processed. Furthermore, a material’s performance is a function of its proper-

ties. Thus, the interrelationship between processing, structure, properties, and perfor-

mance is as depicted in the schematic illustration shown in Figure 1.1. Throughout this 

text, we draw attention to the relationships among these four components in terms of the 

design, production, and utilization of materials.

We present an example of these processing-structure-properties-performance prin-

ciples in Figure 1.2, a photograph showing three thin-disk specimens placed over some 

printed matter. It is obvious that the optical properties (i.e., the light transmittance) of 

each of the three materials are different; the one on the left is transparent (i.e., virtually 

2Throughout this text we draw attention to the relationships between material properties and structural elements.

Figure 1.1 The four components of the discipline of materials science and 

engineering and their interrelationship.

Processing Structure Properties Performance
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all of the reflected light passes through it), whereas the disks in the center and on the 

right are, respectively, translucent and opaque. All of these specimens are of the same 

material, aluminum oxide, but the leftmost one is what we call a single crystal—that is, 

has a high degree of perfection—which gives rise to its transparency. The center one is 

composed of numerous and very small single crystals that are all connected; the bound-

aries between these small crystals scatter a portion of the light reflected from the printed 

page, which makes this material optically translucent. Finally, the specimen on the right 

is composed not only of many small, interconnected crystals, but also of a large number 

of very small pores or void spaces. These pores also effectively scatter the reflected light 

and render this material opaque.

Thus, the structures of these three specimens are different in terms of crystal 

boundaries and pores, which affect the optical transmittance properties. Furthermore, 

each material was produced using a different processing technique. If optical transmit-

tance is an important parameter relative to the ultimate in-service application, the per-

formance of each material will be different.

Why do we study materials? Many an applied scientist or engineer, whether mechani-

cal, civil, chemical, or electrical, is at one time or another exposed to a design problem 

involving materials, such as a transmission gear, the superstructure for a building, an 

oil refinery component, or an integrated circuit chip. Of course, materials scientists 

and engineers are specialists who are totally involved in the investigation and design of 

materials.

Many times, a materials problem is one of selecting the right material from the 

thousands available. The final decision is normally based on several criteria. First of all, 

the in-service conditions must be characterized, for these dictate the properties required 

of the material. On only rare occasions does a material possess the maximum or ideal 

combination of properties. Thus, it may be necessary to trade one characteristic for 

another. The classic example involves strength and ductility; normally, a material hav-

ing a high strength has only a limited ductility. In such cases, a reasonable compromise 

between two or more properties may be necessary.

A second selection consideration is any deterioration of material properties that 

may occur during service operation. For example, significant reductions in mechanical 

strength may result from exposure to elevated temperatures or corrosive environments.

1.3  WHY STUDY MATERIALS SCIENCE 
AND ENGINEERING?

Figure 1.2 Three thin-disk specimens of 

aluminum oxide that have been placed over a 

printed page in order to demonstrate their 

differences in light-transmittance characteristics. 

The disk on the left is transparent (i.e., virtually 

all light that is reflected from the page passes 

through it), whereas the one in the center is 

translucent (meaning that some of this reflected 

light is transmitted through the disk). The disk 

on the right is opaque—that is, none of the light 

passes through it. These differences in optical 

properties are a consequence of differences in 

structure of these materials, which have resulted 

from the way the materials were processed.
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Finally, probably the overriding consideration is that of economics: What will the 

finished product cost? A material may be found that has the ideal set of properties 

but is prohibitively expensive. Here again, some compromise is inevitable. The cost of 

a finished piece also includes any expense incurred during fabrication to produce the 

desired shape.

The more familiar an engineer or scientist is with the various characteristics and 

structure–property relationships, as well as the processing techniques of materials, the 

more proficient and confident he or she will be in making judicious materials choices 

based on these criteria.

Liberty Ship Failures

C A S E  S T U D Y

The following case study illustrates one role that 

materials scientists and engineers are called 

upon to assume in the area of materials performance: 

analyze mechanical failures, determine their causes, 

and then propose appropriate measures to guard 

against future incidents.

The failure of many of the World War II Liberty 

ships3 is a well-known and dramatic example of the 

brittle fracture of steel that was thought to be duc-

tile.4 Some of the early ships experienced structural 

damage when cracks developed in their decks and 

hulls. Three of them catastrophically split in half when 

cracks formed, grew to critical lengths, and then rap-

idly propagated completely around the ships’ girths. 

Figure 1.3 shows one of the ships that fractured the 

day after it was launched.

Subsequent investigations concluded one or more 

of the following factors contributed to each failure5:

•  When some normally ductile metal alloys are 

cooled to relatively low temperatures, they be-

come susceptible to brittle fracture—that is, they 

experience a ductile-to-brittle transition upon 

cooling through a critical range of temperatures. 

These Liberty ships were constructed of steel that 

experienced a ductile-to-brittle transition. Some 

of them were deployed to the frigid North Atlan-

tic, where the once ductile metal experienced brit-

tle fracture when temperatures dropped to below 

the transition temperature.6

•  The corner of each hatch (i.e., door) was square; 

these corners acted as points of stress concentra-

tion where cracks can form.

•  German U-boats were sinking cargo ships faster 

than they could be replaced using existing con-

struction techniques. Consequently, it became 

necessary to revolutionize construction methods 

to build cargo ships faster and in greater numbers. 

This was accomplished using prefabricated steel 

sheets that were assembled by welding rather 

than by the traditional time-consuming riveting. 

Unfortunately, cracks in welded structures may 

propagate unimpeded for large distances, which 

can lead to catastrophic failure. However, when 

structures are riveted, a crack ceases to propagate 

once it reaches the edge of a steel sheet.

•  Weld defects and discontinuities (i.e., sites where 

cracks can form) were introduced by inexperi-

enced operators.

3During World War II, 2,710 Liberty cargo ships were mass-produced by the United States to supply food and 

materials to the combatants in Europe.
4Ductile metals fail after relatively large degrees of permanent deformation; however, very little if any permanent 

deformation accompanies the fracture of brittle materials. Brittle fractures can occur very suddenly as cracks spread 

rapidly; crack propagation is normally much slower in ductile materials, and the eventual fracture takes longer. For 

these reasons, the ductile mode of fracture is usually preferred. Ductile and brittle fractures are discussed in 

Sections 9.3 and 9.4.
5Sections 9.2 through 9.5 discuss various aspects of failure.
6This ductile-to-brittle transition phenomenon, as well as techniques that are used to measure and raise the critical 

temperature range, are discussed in Section 9.8.

(continued)
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Remedial measures taken to correct these prob-

lems included the following:

•  Lowering the ductile-to-brittle temperature of 

the steel to an acceptable level by improving steel 

quality (e.g., reducing sulfur and phosphorus im-

purity contents).

•  Rounding off hatch corners by welding a curved 

reinforcement strip on each corner.7

•  Installing crack-arresting devices such as riveted 

straps and strong weld seams to stop propagating 

cracks.

•  Improving welding practices and establishing 

welding codes.

In spite of these failures, the Liberty ship program 

was considered a success for several reasons, the pri-

mary reason being that ships that survived failure were 

able to supply Allied Forces in the theater of operations 

and in all likelihood shortened the war. In addition, 

structural steels were developed with vastly improved 

resistances to catastrophic brittle fractures. Detailed 

analyses of these failures advanced the understand-

ing of crack formation and growth, which ultimately 

evolved into the discipline of fracture mechanics.

Figure 1.3 The Liberty ship S.S. Schenectady, which, in 1943, failed 

before leaving the shipyard.
(Reprinted with permission of Earl R. Parker, Brittle Behavior of Engineering 
Structures, National Academy of Sciences, National Research Council, John 

Wiley & Sons, New York, 1957.)

7The reader may note that corners of windows and doors for all of today’s marine and aircraft structures are 

rounded.

Solid materials have been conveniently grouped into three basic categories: metals, 

ceramics, and polymers, a scheme based primarily on chemical makeup and atomic struc-

ture. Most materials fall into one distinct grouping or another. In addition, there are the 

composites, which are engineered combinations of two or more different materials. A 

brief explanation of these material classifications and representative characteristics is 

offered next. Another category is advanced materials—those used in high-technology 

applications, such as semiconductors, biomaterials, smart materials, and nanoengi-

neered materials; these are discussed in Section 1.5.

Tutorial Video:
What are the 

Different Classes 

of Materials?

1.4 CLASSIFICATION OF MATERIALS
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Metals

Metals are composed of one or more metallic elements (e.g., iron, aluminum, copper, 

titanium, gold, nickel), and often also nonmetallic elements (e.g., carbon, nitrogen, 

oxygen) in relatively small amounts.8 Atoms in metals and their alloys are arranged in a 

very orderly manner (as discussed in Chapter 3) and are relatively dense in comparison 

to the ceramics and polymers (Figure 1.4). With regard to mechanical characteristics, 

these materials are relatively stiff (Figure 1.5) and strong (Figure 1.6), yet are ductile 

(i.e., capable of large amounts of deformation without fracture) and are resistant to 

fracture (Figure 1.7), which accounts for their widespread use in structural applications. 

Metallic materials have large numbers of nonlocalized electrons; that is, these electrons 

are not bound to particular atoms. Many properties of metals are directly attributable 

to these electrons. For example, metals are extremely good conductors of electricity 

Tutorial Video:
Metals

8The term metal alloy refers to a metallic substance that is composed of two or more elements.
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Engineering Materials 
1: An Introduction to 

Properties, Applications 
and Design, third 

edition, M. F. Ashby and 

D. R. H. Jones, pages 

177 and 178. Copyright 

2005, with permission 

from Elsevier.)

(Figure 1.8) and heat and are not transparent to visible light; a polished metal surface 

has a lustrous appearance. In addition, some of the metals (i.e., Fe, Co, and Ni) have 

desirable magnetic properties.

Figure 1.9 shows several common and familiar objects that are made of metallic materials. 

Furthermore, the types and applications of metals and their alloys are discussed in Chapter 13.

Ceramics

Ceramics are compounds between metallic and nonmetallic elements; they are most fre-

quently oxides, nitrides, and carbides. For example, common ceramic materials include 

aluminum oxide (or alumina, Al2O3), silicon dioxide (or silica, SiO2), silicon carbide (SiC), 

silicon nitride (Si3N4), and, in addition, what some refer to as the traditional ceramics—those 

composed of clay minerals (e.g., porcelain), as well as cement and glass. With regard to 

mechanical behavior, ceramic materials are relatively stiff and strong—stiffnesses and 

strengths are comparable to those of the metals (Figures 1.5 and 1.6). In addition, they are 

typically very hard. Historically, ceramics have exhibited extreme brittleness (lack of 

ductility) and are highly susceptible to fracture (Figure 1.7). However, newer ceramics 

are being engineered to have improved resistance to fracture; these materials are used for 

Tutorial Video:
Ceramics
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cookware, cutlery, and even automobile engine parts. Furthermore, ceramic materials are 

typically insulative to the passage of heat and electricity (i.e., have low electrical conductivi-

ties; Figure 1.8) and are more resistant to high temperatures and harsh environments than 

are metals and polymers. With regard to optical characteristics, ceramics may be trans-

parent, translucent, or opaque (Figure 1.2), and some of the oxide ceramics (e.g., Fe3O4) 

exhibit magnetic behavior.

Several common ceramic objects are shown in Figure 1.10. The characteristics, 

types, and applications of this class of materials are also discussed in Chapter 13.

Polymers

Polymers include the familiar plastic and rubber materials. Many of them are organic 

compounds that are chemically based on carbon, hydrogen, and other nonmetallic ele-

ments (i.e., O, N, and Si). Furthermore, they have very large molecular structures, often 

chainlike in nature, that often have a backbone of carbon atoms. Some common and 

 familiar polymers are polyethylene (PE), nylon, poly(vinyl chloride) (PVC), polycar-

bonate (PC), polystyrene (PS), and silicone rubber. These materials typically have low 

densities (Figure 1.4), whereas their mechanical characteristics are generally dissimilar 
Tutorial Video:

Polymers

E
le

c
tr

ic
a
l 
c
o
n
d
u
c
ti

vi
ty

 (
in

 u
n
it

s 
o
f 

re
c
ip

ro
c
a
l 

o
h
m

-m
e
te

rs
) 

(l
o
g
a
ri

th
m

ic
 s

c
a
le

)

108

104

1

10–12

10–8

10–4

10–16

10–20

Ceramics Polymers

Semiconductors

MetalsFigure 1.8 

Bar chart of room-

temperature 

electrical 

conductivity ranges 

for metals, ceramics, 

polymers, and 

semiconducting 

materials.

Figure 1.9 Familiar objects made of 

metals and metal alloys (from left to right): 

silverware (fork and knife), scissors, coins, a 

gear, a wedding ring, and a nut and bolt.
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